Agenda

- Introduction J. Henegar
- System Architecture Overview T. Ulrich
- Operations Concept R. Whitman
- IAS Software Subsystem Design
 - Process Control Subsystem
 - Data Management Subsystem
 - Evaluation and Analysis Subsystem
 - Radiometric Processing Subsystem
 - Geometric Processing Subsystem
 - End-to-End Scenario
- IAS Hardware Architecture
- Wrap-up

- J. Garrahan
- J. Garrahan
- D. Kaufmann
- J. Rowe
- J. Storey
- J. Garrahan
- D. Slater

Purpose of IAS

- Primary IAS Tasks
 - Assess quality of L0R Products
 - Calibrate instrument and spacecraft
 - Support anomaly investigation
- The execution of these tasks determine the data to be acquired and processed

IAS Delta System/Preliminary Design Review IAS Assessment Table

Scene Type	# to order/ quarter	# to Process	Assessments and	Outputs/Reports
		/Level	Calibrations	
Random Day Scene			Level 0R Product Quality	Daily Assessment Report
	90	90 /1 Gs	(Table 3.2.2.4-1)	
			Detector Operability	
			Detector Saturation	
			Impulse and Random Noise	
			Banding and Striping	
Geodetic Test Site		(1)	Geodetic Accuracy	Calibration Reports for each
	6-24	12-48/1Gs	Sensor Alignment	Quarterly Report/CPF Update
Geometric Super-Site		(2)	Scan Mirror Calibration	Calibration Reports for each
	2-6	4-12/1Gt	I-I Registration Assessment	Quarterly Report/CPF Update
Focal Plane Cal. Image			B-B Registration Assessment	Calibration Reports for each
	4-12	4-12/1Gs	Band Placement Calibration	Quarterly Report/CPF Update
Night Scenes	(3)		Characterize Coherent Noise	Assessment Report for each
	20-44	20-44/1R	Char. Scan Correlated Shift	Quarterly Report
			Characterize Memory Effect	
PASC Data	(4)		Characterize Memory Effect	Calibration Report for each
	180	180/1Rp	Rel. Radiometric Accuracy	Quarterly Report/CPF update
FASC Data	(5)		Characterize Coherent Noise	Calibration Report for each
	8-30	8-30/1Rf	Char. Scan Correlated Shift	Quarterly Report/CPF update
			Characterize Memory Effect	
			Rel. Radiometric Accuracy	
MTF Image			Characterize MTF	Assessment Report for each
				Quarterly Report/ CPF update
Ground Look Calibration			Absolute Rad. Accuracy	Calibration Report
	1	1/1 Gt		

⁽¹⁾ For each of the 6-24 scenes, process PAN band once to 1G systematic using PCD ephemeris and once again using FDF definitive ephemeris for a range of 12-48.

⁽²⁾ For each of the 2-6 scenes, process PAN band to 1G systematic and then to 1G terrain corrected.

⁽³⁾ Optimally, a 20 scene interval is desired once per quarter. Additionally, the non-bright scenes acquired with the PASC images will be ordered 2 per week.

⁽⁴⁾ PASC imaging is scheduled once per day, each PASC acquisition is approximately 6 scenes in length with the bright area of interest covering 2 scenes that will be ordered (90x2). Each scene will be processed to 1R level using a unique PASC processing algorithm.

⁽⁵⁾ FASC imagaing is scheduled once every six weeks, therefore could be acquired once or twice in a quarter. There are two types of FASC imaging; one collecting 8 scenes when done in conjunction with PASC imaging and one collecting 15 images when done on a stand alone basis.

Scenarios

- Scenarios presented from a user's perspective
 - Order Data From DAAC
 - Generate MOC Request
 - Generate Work Order
 - Processing Scenario
 - Generate Calibration Parameter File

Order Data From DAAC

- Connect to DAAC via Web Browser
- Query/browse for desired scenes
- Select and order scenes
- Update IAS Work Order with corresponding scene ids
- DAAC notifies IAS when data is available and IAS ftps data
- Data products are checked for completeness
- IAS catalog updated with data product information
- Received data products checked against outstanding Work Orders and operator notified if no matches found

Order and Receive Data

Generate MOC Request

- Concentrated Ephemeris Request
 - User fills in a form specifying the start and end times for the requested data or selects a L0R product and the times are automatically extracted
 - Multiple requests may be put into a single request file
 - Request file is created and staged for transfer to the MOC
 - Requests are tracked in the database

IAS Delta System/Preliminary Design Review Generate MOC Request (Cont'd)

- Calibration Scene Request
 - User specifies if this is a orbit number based or WRS path/row based request
 - User fills in a form specifying the appropriate information
 - Multiple requests may be put into a single request file
 - Request file is created and staged for transfer to the MOC
 - Requests are tracked in the database

Create Work Order

New Work Order

- User specifies a new Work Order and a form is displayed for the user to enter information
- List of values and default values are supplied where appropriate
- Input data is specified, if known
- User selects processing procedure to apply to the input data
- Processing parameters associated with the processing procedure are selected
- Work Order is committed to the system
- Process Control Subsystem will schedule the Work Order for processing once all required input data are available

Create Work Order (Cont'd)

- Modify Existing Work Order
 - User queries system for existing Work Order
 - Work Order attributes are displayed and the user may make and commit changes

Create Work Order (Cont'd)

- Fields associated with Work Order setup
 - work order number (generated by system)
 - date entered (generated by system)
 - requester (generated by system)
 - priority
 - request type
 - requested completion date
 - processing procedure (submenu for input parameter selection)
 - input data specification
 - comment

IAS Delta System/Preliminary Design Review Work Order Processing Procedure

- Named procedures consist of a set of processing scripts
- Scripts execute application programs to process data
- Application programs obtain input parameters as needed
- Process Control System controls the execution of the scripts
- Scripts can be set to pause when complete for analysis of results

IAS Delta System/Preliminary Design Review Standard 1R/1G Processing

Analysis of Results

- Execution of a processing procedure results in trending and calibration information
- Results may be reviewed at the end of each script or at the completion of the Work Order
- Processing history logs and intermediate products are generated in a Work Order specific directory
- E&A functions are used to view and analyze intermediate products and end results
- Cleanup of temporary files will begin once analyst has indicated that their review of the results is complete

Anomaly Resolution

- The same tools used in normal processing are available for anomaly resolution and "what if" processing.
- Analyst sets up Work Order using standard or custom scripts
- Analyst can control execution of scripts (e.g., go backwards in procedure to rerun scripts)
- Results are "tagged" to differentiate them from normal processing runs

Generate Calibration Parameter File

- Calibration parameter sets are generated and maintained in the database
- To generate a new CPF the user selects the calibration parameter set to use from the database
- The appropriate filename is constructed and the parameters written to the CPF
- The database is updated to indicate that a CPF has been generated using the specified calibration parameter set
- The new CPF is reviewed before being released for distribution

Generate Calibration Parameter File (Cont'd)

Development and Testing

- Development and testing new algorithms occurs in the Dev/I&T environment
- Configuration management procedures control the promotion of applications from the Dev/I&T environment to the production system
- Further qualification may be performed in the E&A system